Partes del Boxplot: El nombre original del gráfico introducido por Jhon Tukey en 1977 es Box and whisker plot, es decir, diagrama de caja y bigote. En efecto, el gráfico consiste en un rectángulo (caja) de cuyos lados superiores e inferior se derivan respectivamente, dos segmentos: uno hacia arriba y uno hacia abajo (bigotes).
La caja y los bigotes están ubicados paralelos a un eje rotulado, que en este caso está en la escala del 1 al 5 e indica el puntaje obtenido en una pregunta según la opinión de los estudiantes que llenaron el instrumento de opinión.
Las partes del Boxplot se identifican como sigue:1.-
Límite superior: Es el extremo superior del bigote. Las opiniones por encima de este límite se consideran atípicas. Para más detalles consulte
sobre la construcción de los límites y los valores atípicos.2.-
Tercer cuartil (Q3): Por debajo de este valor se encentran como máximo el 75% de las opiniones de los estudiantes.
3.-
Mediana: Coincide con el segundo cuartil. Divide a la distribución en dos partes iguales. De este modo, 50% de las observaciones están por debajo de la mediana y 50% está por encima.
4.-
Primer cuartil (Q1): Por debajo de este valor se encuentra como máximo el 25% de las opiniones de los estudiantes
5.-
Límite inferior: Es el extremo inferior del bigote. Las opiniones por debajo de este valor se consideran atípicas. Para más detalles consulte
sobre la construcción de los límites y los valores atípicos.6.-
Valores atípicos: Opiniones que están apartadas del cuerpo principal de datos. Pueden representar efectos de causas extrañas, opiniones extremas o en el caso de la tabulación manual, errores de medición o registro.
Se colocan en la gráfica con asteriscos (*) o puntos (.) según se alejan menos o más del conjunto de datos. Se utiliza un superíndice numérico para indicar el número de veces que aparece ese dato como atípico. NOTA: Esta presentación en línea del Boxplot está en primera versión y aun en proceso de mejora. Se señalan los datos atípicos con una circunferencia (o) en el caso de ser única la observación. En caso contrario, usted sólo verá un triángulo ($). Si esto sucede, debe remitirse al reporte numérico para verificar la cantidad de observaciones atípicas por pregunta.
7.-
Media aritmética: Es lo que tradicionalmente se conoce como
promedio. Originalmente no forma parte del boxplot, sin embargo, se consideró su inclusión para dar una idea del puntaje general obtenido por pregunta. Actualmente se trabaja en la elaboración de
estadísticos más representativos que la media aritmética para describir el conjunto de datos.
¿Cómo se interpreta? Tenga en cuenta las siguientes consideraciones a la hora de interpretar el boxplot:
.-Mientras más larga la caja y los bigotes, más dispersa es la distribución de datos.
.-La distancia entre las cinco medidas descritas en el boxplot (sin incluir la media aritmética) puede variar, sin embargo, recuerde que la cantidad de elementos entre una y otra es aproximadamente la misma. Entre el límite inferior y Q1 hay igual cantidad de opiniones que de Q1 a la mediana, de ésta a Q3 y de Q3 al límite superior. Se considera aproximado porque pudiera haber valores atípicos, en cuyo caso la cantidad de elementos se ve levemente modificada.
.-La línea que representa la mediana indica la simetría. Si está relativamente en el centro de la caja la distribución es simétrica. Si por el contrario se acerca al primer o tercer cuartil, la distribución pudiera ser sesgada a la derecha (asimétrica positiva) o sesgada a la izquierda (asimétrica negativa respectivamente. Esto suele suceder cuando las opiniones de los estudiantes tienden a concentrase más hacia un punto de la escala.
.-La mediana puede inclusive coincidir con los cuartiles o con los límites de los bigotes. Esto sucede cuando se concentran muchos datos en un mismo punto, en este caso, cuando muchos estudiantes opinan igual en determinada pregunta. Pudiera ser este un caso particular de una distribución sesgada o el caso de una distribución muy homogénea.
.-Las opiniones emitidas como No aplica (N/A) cuando en realidad sí aplica o las opiniones nulas (cuando el estudiante no opina en una pregunta), no son tomadas en cuenta para elaborar el boxplot de esa pregunta. Por esta razón encontrará que en ocasiones no hay igual número de opiniones para todas las preguntas.
.-Debe estar atento al número de estudiantes que opina en cada pregunta. Lo que pareciera ser dispersión en los resultados, en ocasiones podría deberse a un tamaño de muestra muy pequeño: pocos estudiantes opinaron. Debe ser cauteloso a la hora de interpretar. En estos casos se sugiere remitirse al reporte numérico.
.-En términos comparativos, procure identificar aquellas preguntas cuyos boxplot parecen diferir del resto. Pudiera con esto encontrar fortalezas o debilidades en su actuación según la opinión de los estudiantes.
Se observa una variabilidad muy grande en cuanto a las impresiones que los estudiantes tienen del profesor en los diferentes aspectos de su actuación. Esto se concluye porque no existe una tendencia homogénea en las respuestas por pregunta.
Las opiniones son muy homogéneas y positivas en la pregunta 5: Logra comunicarse efectivamente con el estudiante. Este aspecto resalta en la actuación del docente y además todos los estudiantes encuestados coinciden en ello.
También se considera muy positiva la impresión que los estudiantes tienen en cuanto a los aspectos que se refieren a las preguntas 2, 6, 9, 12 y 13; salvo un par de opiniones que difieren del resto en las preguntas 2 y 6, las respuestas son homogéneas. Note que estas opiniones separadas son datos atípicos pues se alejan del cuerpo de datos. Note también que por el proceso de mejora que sufren los gráficos presentados en línea, debe remitirse al reporte numérico en la pregunta 2 para verificar el número de respuestas atípicas dado que el símbolo representativo por el momento es ($), mas no así en la 9 pues ya se comentó que el símbolo (¡) se refiere a sólo un dato atípico y en este caso vale “2”.
Observe que según la opinión de los estudiantes el aspecto de la pregunta 17: Realiza la entrega y revisión oportuna de los resultados de las evaluaciones revela el puntaje más bajo respecto al resto de las pregunta, lo cual pudiera ser un aspecto a considerar por el docente dado que además el 50% de los estudiantes le otorga el puntaje más bajo. Note que aquí la mediana es “1”, lo que indica que la mitad de las observaciones está allí (no por debajo porque no hay valor más bajo)
Note que algunos boxplot no tienen bigotes. En estos casos, como por ejemplo en la pregunta 19, el límite inferior coincide con el Q1 y el límite superior coincide con el Q3. En esta pregunta se evidencia simetría y bastante variabilidad.
El resto de las preguntas presentan alta variabilidad por lo que deben leerse cuidadosamente en función del punto donde se concentra la mayor cantidad de información, esto es, viendo la posición de la mediana (véase Simetría). Esta alta variabilidad indica que la opinión de los estudiantes respecto a los planteamientos es bastante heterogénea.
.-
Asimétrica positiva o sesgada a la derecha: los datos tienden a concentrarse hacia la parte inferior de la distribución y se extienden más hacia la derecha. La media suele ser mayor que la mediana en estos casos. En el contexto, las opiniones se concentran en un puntaje menor y las de mayor puntaje están más dispersas.
.-
Asimétrica negativa o sesgada a la izquierda: los datos tienden a concentrarse hacia la parte superior de la distribución y se extienden más hacia la izquierda. La media suele ser menor que la mediana en estos casos. En el contexto, las opiniones se concentran en un puntaje mayor y las de menor puntaje están más dispersas.
Medida de Tendencia central: Estadístico que procura aportar información sobre la localización central de la distribución de datos. Son: la media aritmética, la moda, la mediana, la media geométrica y la media armónica, y se emplean de acuerdo al objetivo del estudio y al tipo de dato que se tenga.
Valor Mínimo o Máximo: Es el dato más pequeño o más grande de la distribución, respectivamente. En este contexto, es el puntaje más bajo o más alto otorgado por los estudiantes en determinada pregunta.